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Module IV 

 Dynamic Programming, Back Tracking and Branch & Bound 

o Dynamic Programming Control Abstraction 

 The Optimality Principle 

 Matrix Chain Multiplication-Analysis 

 All Pairs Shortest Path Algorithm - Floyd-Warshall Algorithm-Analysis 

o The Control Abstraction of Back Tracking – The N Queen’s Problem  

o Branch and Bound Algorithm for Travelling Salesman Problem 

  

 

 Dynamic Programming 

o Dynamic programming is an algorithm design method that can be used when the solution to a 

problem can be viewed as the result of a sequence of decisions. 

o Dynamic Programming is mainly an optimization over plain recursion.  

o Wherever we see a recursive solution that has repeated calls for same inputs, we can optimize 

it using Dynamic Programming.  

o The idea is to simply store the results of subproblems, so that we do not have to re-compute 

them when needed later.  

o This simple optimization reduces time complexities from exponential to polynomial. 

o For example, if we write simple recursive solution for Fibonacci Numbers, we get exponential 

time complexity and if we optimize it by storing solutions of subproblems, time complexity 

reduces to linear. 

o In dynamic programming an optimal sequence of decisions is obtained by making explicit 

appeal to the principle of optimality. 

 

o The Optimality Principle 

 Definition: The principle of optimality states that an optimal sequence of decisions has 

the property that whatever the initial state and decision are, the remaining decisions must 

constitute an optimal decision sequence with regard to the state resulting from the first 

decision. 

 A problem is said to satisfy the Principle of Optimality if the subsolutions of an optimal 

solution of the problem are themesleves optimal solutions for their subproblems. 

 Examples: 

 The shortest path problem satisfies the Principle of Optimality. 

 This is because if a,x1,x2,...,xn,b is a shortest path from node a to node b in a graph, 

then the portion of xi to xj on that path is a shortest path from xi to xj. 

 

o Characteristics of Dynamic Programming 

1. Overlapping Subproblems 

 Subproblems are smaller versions of the original problem. Any problem has 

overlapping sub-problems if finding its solution involves solving the same 

subproblem multiple times. 

 Dynamic Programming also combines solutions to sub-problems. It is mainly used 

where the solution of one sub-problem is needed repeatedly. The computed solutions 

are stored in a table, so that these don‟t have to be re-computed. Hence, this technique 

is needed where overlapping sub-problem exists. 

 For example, Binary Search does not have overlapping sub-problem. Whereas 

recursive program of Fibonacci numbers have many overlapping sub-problems. 
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2. Optimal Substructure 

 A given problem has Optimal Substructure Property, if the optimal solution of the 

given problem can be obtained using optimal solutions of its sub-problems. 

 For example, the Shortest Path problem has the following optimal substructure 

property: If a node x lies in the shortest path from a source node u to destination 

node v, then the shortest path from u to v is the combination of the shortest path 

from u to x, and the shortest path from x to v. 

 

o Steps of Dynamic Programming 

 Dynamic programming design involves 4 major steps: 

1. Characterize the structure of an optimal solution. 

2. Recursively define the value of an optimal solution. 

3. Compute the value of an optimal solution, typically in a bottom-up fashion. 

4. Construct an optimal solution from computed information. 

 

o Optimal matrix multiplication 

 Suppose we wish to compute the product of 4 matrices A1 x A2 x A3 x A4  

 The different parenthesizations are 

( A1(A2( A3 A4)))  

( A1((A2 A3) A4)) 

( (A1A2)( A3 A4))  

(( A1(A2 A3))A4)  

((( A1A2) A3)A4)  

 

 We can multiply two matrices A and B if and only if they are compatible: The number of 

columns of A must be equal to the number of rows of B.  

 If A is a pXq matrix and B is a qXr matrix, the resulting matrix C is a pX r matrix.  

 The time to compute C is pqr.  

 We shall express costs in terms of the number of scalar multiplications 

 Example:  

 Consider 3 matrices A1, A2 and A3. Its dimensions are 10X100, 100X5, 5X50 

respectively. 

 Number of scalar multiplications for 

o ( (A1A2) A3) is 7500 

o (A1 (A2A3)) is 75000 

 Thus, computing the product according to the first parenthesization is 10 times faster.  

 

 Matrix-Chain Multiplication Problem: Given a chain (A1, A2, . . . An ) of n matrices, 

where for i = 1, 2, . . . n, matrix Ai has dimension pi-1 X pi , fully parenthesize the product 

A1A2. . .  An in a way that minimizes the number of scalar multiplications 

 In the matrix-chain multiplication problem, we are not actually multiplying matrices.  

 Our goal is only to determine an order for multiplying matrices that has the lowest cost  
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 Matrix Chain Multiplication : Dynamic Programming Method 

 Step 1: The structure of an optimal parenthesization 

o Ai. .j denote the matrix that results from evaluating the product AiAi+1 . . . Aj where 

i<= j 

o If i< j, we must split the problem into two subproblems (Ai Ai+1 . . . Ak and 

Ak+1Ai+1 . . . Aj ), for some integer k in the range i<= k < j.  

o That is, for some value of k, we first compute the matrices Ai. .k and Ak+1. .j. Then 

multiply them together to produce the final product Ai. .j . 

o Total cost = Cost of computing the matrix Ai. .k+ Cost of computing Ak+1. .j+ Cost 

of multiplying them together. 

 

 Step 2: A recursive solution 

o We can define the cost of an optimal solution recursively in terms of the optimal 

solutions to subproblems. 

o Let m[i, j] be the minimum number of scalar multiplications needed to compute 

the matrix Ai. .j 

o For the full problem, the lowest cost way to compute A1. .n would thus be m[1, n] 

o Ai. .i = Ai  so m[i,i] = 0 for i=1,2,. .. . n  

 
o s[i,j] be a value of k at which we split the product AiAi+1 . . . Aj in an optimal 

parenthesization.  

o This will take exponential time 

 

 Step 3: Computing the optimal costs 

o Compute the optimal cost by using a tabular, bottom-up approach 

Algorithm Matrix_Chain_Order(p) 

{ n = p.length – 1 

 Let m[1..n, 1..n] and s[1..n-1 , 2..n] be new tables 

 for i=1 to n do 

  m[i,i] = 0 

 for l=2 to n do 

 { for i=1 to n-l+1 do 

  { j=i+l-1 

   m[i,j] = α 

   for k=i to j-1 do 

   { q = m[i,k] + m[k+1,j] + pi-1 pk pj 

    if q<m[i,j] then 

    { m[i,j] = q 

     s[i,j] = k 

    } 

} 

    

  } 

 } 

 return m[][] and s[][] 

} 
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o Matrix Ai has dimensions pi-1 X pi for i =1,2, . . . n. 

o Input to this algorithm is a sequence p = ( p0, p1, . . . . pn ), where p.length = n + 1.  

o The procedure uses 2 auxiliary tables 

o m[1 .. n , 1...n] for storing the cost of matrix multiplication 

o s[1..n-1 , 2 ...n]  records which index of k achieved the optimal cost in computing  

m[i,j] .  

 

 Step 4: Constructing an optimal solution 

Algorithm Print_Optimal_Parens(s,i,j) 

{ 

 if i==j then 

  print “A”i 

 else 

  print “(“ 

  print_Optimal_Parens(s,i,s[i,j]) 

  print_Optimal_Parens(s,s[i,j]+1,j) 

  print “)” 

} 

o Initial call is PRINT-OPTIMAL-PARENS(s,1,n) 

 

 Time Complexity 

 We are generating n(n-1)/2 number of elements in matrix m[].  

 To calculate each element it will take atmost n time. 

 So the time complexity = O( n.n(n-1)/2) = O(n
3
) 

 

o Examples 

1. Using Dynamic Programming, find the fully parenthesized matrix product for multiplying 

the chain of matrices< A1 A2 A3 A4 A5 A6 > whose dimensions are <30X35>, 

<35X15>, <15X5>, <5X10>, <10X20> and <20X25> respectively 

2. Given a chain of 4 matrices <A1,A2,A3,A4> with dimensions 

<5X4>,<4X6>,<6X2>,<2X7> respectively. Using Dynamic programming find the 

minimum number of scalar multiplications needed and also write the optimal 

multiplication order.  

3. Find an optimal paranthesization of a matrix-chain product whose sequence of  

dimensions is 4x10,10x3,3x12,12x20,20x7  

  

 

 

 

 

o All pairs shortest path problem 

 Find the shortest distances between every pair of vertices in a given weighted directed 

Graph 

 The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. 

Negative edge weights are also allowed. 

 As a result of this algorithm, it will generate a matrix, which will represent the minimum 

distance from any node to all other nodes in the graph. 
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 Floyd Warshall Algorithm 

Inputs are the adjacency matrix of the given graph and total number of vertices 

 

Algorithm FloydWarshall(cost[][], n) 

{ 

  for i=1 to n do 

   for j=1 to n do 

    D[i, j] = cost[i, j] 

for k := 1 to n do 

        for i := 1 to n do 

            for j := 1 to n do 

     D[i, j] = min{D[i, j] , D[i, k] + D[k, j] } 

       Return D 

} 

 

 Time Complexity 

 Floyd Warshall Algorithm consists of three loops over all the nodes. Each loop has 

constant complexities.  

 Hence, the time complexity of Floyd Warshall algorithm = O(n
3
), where n is the 

number of nodes in the given graph.  

 Example 

 Consider the following directed weighted graph. Using Floyd Warshall Algorithm, find 

the shortest path distance between every pair of vertices  

 
 Solution 

o Remove all self loops and parallel edges(keeping the lowest weight edge) of the 

given graph 

o Write the adjacency matrix 

  
o Find the matrix D

1
 

 Keep the 1
st
 row, 1

st
 column and diagonal elements of D

0 
as such 

 D
1
(2,3)  = min{ D

0
(2,3), D

0
(2,1) + D

0
(1,3) } = min{α, 6+(-4)) = 2  

 D
1
(2,4)  = min{ D

0
(2,4), D

0
(2,1) + D

0
(1,4) } = min{2, 6+α)    = 2 

 D
1
(3,2)  = min{ D

0
(3,2), D

0
(3,1) + D

0
(1,2) } = min{5, α +9)    = 5 

 D
1
(3,4)  = min{ D

0
(3,4), D

0
(3,1) + D

0
(1,4) } = min{α, α + α)   = α 

 D
1
(4,2)  = min{ D

0
(4,2), D

0
(4,1) + D

0
(1,2) } = min{α, α +9)    = α 

 D
1
(4,3)  = min{ D

0
(4,3), D

0
(4,1) + D

0
(1,3) } = min{1, α +(-4)) = 1 
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o Find the matrix D

2
 

 Keep the 2
nd

 row, 2
nd

 column and diagonal elements of D
1 
as such 

 D
2
(1,3)  = min{ D

1
(1,3), D

1
(1,2) + D

1
(2,3) } = min{-4, 9+2) = -4  

 D
2
(1,4)  = min{ D

1
(1,4), D

1
(1,2) + D

1
(2,4) } = min{α, 9+2) = 11  

 D
2
(3,1)  = min{ D

1
(3,1), D

1
(3,2) + D

1
(2,1) } = min{α, 5+6) = 11  

 D
2
(3,4)  = min{ D

1
(3,4), D

1
(3,2) + D

1
(2,4) } = min{α, 5+2) = 7  

 D
2
(4,1)  = min{ D

1
(4,1), D

1
(4,2) + D

1
(2,1) } = min{α, α+6) = α 

 D
2
(4,3)  = min{ D

1
(4,3), D

1
(4,2) + D

1
(2,3) } = min{1, α+2) = 1 

 
o Find the matrix D

3
 

 Keep the 3
rd

 row, 3
rd

 column and diagonal elements of D
2 
as such 

 D
3
(1,2)  = min{ D

2
(1,2), D

2
(1,3) + D

2
(3,2) } = min{9, -4+5)     = 1  

 D
3
(1,4)  = min{ D

2
(1,4), D

2
(1,3) + D

2
(3,4) } = min{11, -4+7)  = 3  

 D
3
(2,1)  = min{ D

2
(2,1), D

2
(2,3) + D

2
(3,1) } = min{6, 2+11)   = 6  

 D
3
(2,4)  = min{ D

2
(2,4), D

2
(2,3) + D

2
(3,4) } = min{2, 2+7)     = 2  

 D
3
(4,1)  = min{ D

2
(4,1), D

2
(4,3) + D

2
(3,1) } = min{α, 1+11)   = 12 

 D
3
(4,2)  = min{ D

2
(4,2), D

2
(4,3) + D

2
(3,2) } = min{α, 1+5)     = 6 

 
o Find the matrix D

4
 

 Keep the 4
th

 row, 4
th
 column and diagonal elements of D

3 
as such 

 D
4
(1,2)  = min{ D

3
(1,2), D

3
(1,4) + D

3
(4,2) } = min{1, 3+6)     = 1  

 D
4
(1,3)  = min{ D

3
(1,3), D

3
(1,4) + D

3
(4,3) } = min{-4, 3+1)     = -4  

 D
4
(2,1)  = min{ D

3
(2,1), D

3
(2,4) + D

3
(4,1) } = min{6, 2+12)    = 6  

 D
4
(2,3)  = min{ D

3
(2,3), D

3
(2,4) + D

3
(4,3) } = min{2, 2+1)      = 2  

 D
4
(3,1)  = min{ D

3
(3,1), D

3
(3,4) + D

3
(4,1) } = min{11, 7+12)  = 11  

 D
4
(3,2)  = min{ D

3
(3,2), D

3
(3,4) + D

3
(4,2) } = min{5, 7+6)      = 5  

 
o D

4 
represents the shortest distance between each pair of the given graph  
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 Comparison of Divide and Conquer and Dynamic Programming strategies 

o Both techniques split their input into parts, find sub-solutions to the parts, and synthesize 

larger solutions from smaller ones. 

o Divide and Conquer splits its input at pre-specified deterministic points (e.g., most probably in 

the middle) 

o Dynamic Programming splits its input at every possible split points rather than at pre-specified 

points. After trying all split points, it determines which split point is optimal. 

o Divide & Conquer algorithm partition the problem into disjoint subproblems. Solve the 

subproblems recursively and then combine their solution to solve the original problems. 

o Dynamic Programming is used when the subproblems are not independent, e.g. when they 

share the same subproblems. In this case, divide and conquer may do more work than 

necessary, because it solves the same sub problem multiple times. 

o Dynamic Programming solves each subproblems just once and stores the result in a table so 

that it can be repeatedly retrieved if needed again. 

 

 Greedy vs. Dynamic Programming 

o Both techniques are optimization techniques, and both build solutions from a collection of 

choices of individual elements. 

o The greedy method computes its solution by making its choices in a serial forward fashion, 

never looking back or revising previous choices. 

o Dynamic programming computes its solution bottom up by synthesizing them from smaller 

subsolutions, and by trying many possibilities and choices before it arrives at the optimal set 

of choices. 

o There is no a priori litmus test by which one can tell if the Greedy method will lead to an 

optimal solution. 

o By contrast, there is a litmus test for Dynamic Programming, called The Principle of 

Optimality 

o The greedy method only generated one decision sequence ever.  

o In dynamic programming, many decision sequences may be generated. However, sequences 

containing suboptimal subsequences cannot be optimal and so will not generated. 

 

 Back Tracking 

o Backtracking method expressed the solution as n-tuple (x1, x2.,…… xn), where xi‟s are chosen 

from some finite set Si.  

o The problem to be solved calls for finding one vector that maximizes (or minimizes or 

satisfies) a criterion function P(x1, x2.,…… xn). 

o Examples: Sorting the array of integers in a[l: n]  

 The solution to the problem is expressed an n-tuple, where xi is the index of the i
th

 

smallest element.  

 The criterion function P is: a[xi] ≤ a[xi+1], for 1≤ i < n. 

 The set Si ={1,2, . . . . .n} 

 Different methods for solving this problem 

 Brute Force approach 

o Suppose mi is the size of set Si. 

o The number of tuples (with size n) that are possible candidates for satisfying the 

function P is: m = m1 x m2 x m3 . . . . . . x mn  

o Brute Force approach evaluates each one with P, and save those which yield the 

optimum. 
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 Backtracking algorithm  

o It yields the same answer with far fewer than m trials.  

o Its basic idea is to build up the solution vector one component at a time and to use 

modified criterion functions (bounding functions) Pi(x1, x2.,…… xi ) to test 

whether the vector being formed has any chance of success. 

o The major advantage of this method is that if it is realized that the partial vector 

(x1, x2.,…… xi) can in no way lead to an optimal solution, then  mi+1  x  mi+2. . . . . 

. x mn possible test vectors can be ignored entirely. 

 

o Backtracking method require that all the solutions satisfy a complex set of constraints. These 

constraints can be divided into two categories: 

 

 Explicit Constraints 

 Explicit constraints are rules that restrict each xi to take on values only from a given 

set 

 The explicit constraints depend on the particular instance I of the problem being 

solved. All tuples that satisfy the explicit constraints define a possible solution space 

for I. 

 Example: 

 
 

 Implicit Constraints 

 These are rules that determine which of the tuples in the solution space of I satisfy the 

criterion function (Bounding Function).  

 

o N-Queens Problem 
 n queens are to be placed on a n x n chessboard so that no two attack. That is, no two 

queens are on the same row, column, or diagonal. 

 Number the rows and columns of the chessboard 1through n. 

 The queens can also be numbered 1through n. 

 Since each queen must be on a different row, we can assume that queen i is to be placed 

on row i.  

 All solutions to the n-queens problem can therefore be represented as n-tuples(x1, 

x2.,…… xn), where xi is the column on which queen i is placed. 

 Explicit constraint: Si = {1,2,3, . . .  . n }, 1≤ i ≤n 

 The solution space contains |S1| x |S2| x. . . . . . . x |Sn| = n
n
  tuples. 

 Implicit constraints:  

 No two xi‟s can be the same(i.e. all queens must be on different columns)  

o The solution space contains |S1| x |S2| x . . . . . . . x |Sn| = n(n-1)  . . . . .1 = n! tuples 

o It reduces the solution space from n
n
 to n!. 

 No two queens can be on the same diagonal. 

 1 2 3 4 

1  Q1   

2    Q2 

3 Q3    

4   Q4  
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 Following is a tree organization (permutation tree/State Space Tree) for 4-queen 

problem without considering the last implicit constraint.  

       
 The edges are labeled by possible values of xi.   

 Edges from level 1 to level 2 nodes specify the values for x1  

 Edges from level i to level i +1 are labeled with the values of xi  

 Thus, the leftmost sub-tree contains all solutions with x1 = 1; its leftmost sub-tree 

contains all solutions with x1 = 1 and x2 = 2, and soon. 

 The solution space is defined by all paths from the root node to a leaf node. There are 

4!= 24 leaf nodes in the above tree. 

 

o Permutation tree or State Space Tree 

 Tree organization of solution space is called state space tree. 

 Problem State: Each node in this tree defines a problem state. 

 State Space of the problem: All paths from the root to other nodes define the State 

Space of the problem. 

 Solution States: Those problem states s for which the path from the root to s defines a 

tuple in the solution space.  

 Answer states: Those solution states s for which the path from the root to s defines a 

tuple that satisfies all implicit constraints of the problem. 

 Live Node: A node which has been generated and all of whose children have not yet been 

generated is called a live node.  

 E-node : The live node whose children are currently being generated is called the E-node 

 Dead node: It is a generated node which is not to be expanded further or all of whose 

children have been generated. 

 Bounding functions are used to kill live nodes without generating all their children. 

 Problem States can be generated by: 

 Depth First generation of the problem states: 

o As soon as a new child C of the current E-node R is generated, this child will 

become the new E-node.  

o Then R will become the E-node again when the sub-tree C has been fully 

explored.  
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o Backtracking: Depth first node generation with bounding functions. 

 Breadth First generation of the problem states: 

o The -E-node remains the E-node until it is dead.  

o Branch-and-bound methods: Breadth first node generation method with 

bounding function is called Branch and Bound method. There are two alternatives 

 Breadth First Generation Method: Each new node is placed into a queue. 

When all the children of the current-E-node have been generated, the next 

node at the front of the queue becomes the new E-node. 

 
 D-search(depth search): Each new node is placed into a stack. When all the 

children of the current-E-node have been generated, the next node at the top of 

the stack becomes the new E-node. 

 
 At the conclusion of the process at least one answer node is always generated or all 

answer nodes are generated if the problem requires us to find all solutions. 

 

o Backtracking works on 4-Queens Problem 

 If (x1, x2.,…… xi) is the path to the current E-node, then all children nodes with parent-

child labeling xi+1 are such that (x1, x2.,…… xi+1) represents a chessboard configuration in 

which no two queens are attacking. 

 We start with the root node as the only live node. This becomes the E-node and the path is 

(). We generate one child(node 2) and the path is now (1). This corresponds to placing 

queen1on column1.  

 Node2 becomes the E-node. Node3 is generated and immediately killed.  

 The next node generated is node8 and the path becomes(1,3). Node8 becomes the E-node. 

However, it gets killed as all its children represent board configurations that cannot lead 

to an answer node. 

 We back track to node2 and generate another child node13.The path is now (1,4). This 

process continues until it will generate a proper arrangement. 
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State Space Tree of 4 Queens Problem 

o Backtracking Control Abstraction 

 (x1, x2.,…… xi) be a path from the root to a node in a state space tree.  

 Generating Function T(x1, x2.,…… xi) be the set of all possible values for xi+1 such that 

(x1, x2.,…… xi+1) is also a path to a problem state.  

 T(x1, x2.,…… xn) = φ 

 Bounding function Bi+1(x1, x2.,…… xi+1) is false for a path (x1, x2.,…… xi+1) from the 

root node to a problem state, then the path cannot be extended to reach an answer node. 

 Thus the candidates for position i+1of the solution vector (x1, x2.,…… xn) are those 

values which are generated by T and satisfy Bi+1.  

 The recursive version is initially invoked by Backtrack(1). 

    Backtracking Control Abstraction 

Algorithm Backtrack(k) 

{  

 for (each x[k] ϵ T(x[1], . . . .x[k-1]) 

 {     

                  if(Bk(x[1], x[2], . . . . . ., x[k]) != 0) then 

      { 

  if(x[1], x[2], . . . . . ., x[k] is a path to an answer node) 

   then write(x[1:k]) 

  if(k<n) then Backtrack(k+1)  

       }  

 }  

}  
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o All the possible elements for the k
th
 position of the tuple that satisfy Bk are generated one by 

one, and adjoined to the current vector (x1, x2.,…… xk-1 ). 

o Each time xk is attached, a check is made to determine whether a solution has been found. 

Then the algorithm is recursively invoked.  

o When the for loop is exited, no more values for xk exist and the current copy of Backtrack 

ends. The last unresolved call now resumes. 

o This algorithm causes all solutions to be printed. If only a single solution is desired, then a flag 

can be added as a parameter to indicate the first occurrence of success. 

 

 N-Queens Problem(Cond…)  
o Consider an n x n chessboard and try to find all possible way to place n non-attacking 

queens. 

o (x1, x2.,…… xn ) be the solution vector. Queen i is placed in i
th
 row and xi

th
 column. xi will 

all be distinct since no two queens can be placed in the same column. 

o There are 2 type of diagonals 

 Positive Diagonal 

 Diagonal from upper left to lower right 

 Every element on the same diagonal has the same row-column value 

 Suppose 2 queens are place at position (i,j) and (k,l), then i-j = k-l 

 Negative Diagonal 

 Diagonal from upper right to lower left 

 Every element on the same diagonal has the same row+column value 

  Suppose 2 queens are place at position (i,j) and (k,l), then i+j = k+l 

 The 1
st
 equation implies: i-k = j-l 

 The 2
nd

 equation implies: i-k = l - j 

 Combining these two, we will get :  | i-k | = | j-l | 

Absolute value of column difference is equal to the absolute value of row difference. 

 

Algorithm NQueens(k,n) 

{ 

 for i=1 to n do 

 {           if Place(k,i) then 

  {           x[k] = i 

   if(k==n) then write(x[1:n]) 

   else    NQueens(k+1, n) 

} 

 } 

} 

 

Algorithm Place(k,i) 

{ 

 for j=1 to k-1 do 

 { 

  if( (x[j]==i) or ( Abs(j-k)==Abs(x[j]-i) )  then 

   Return false 

 } 

 Return true 

} 



                                                                                                                                   CST 306 - Algorithm Analysis and Design(S6 CSE) 

 13 CS KTU Lectures 

 

o Place(k,i) returns true if the k
th

 queen can be placed in column i. 

 i should be distinct from all previous values x[1],x[2], . . . . . .  ., x[k-1] 

 And no 2 queens are to be on the same diagonal 

 Time complexity of Place() is O(k) 

o NQueen() is initially invoked by NQueen(1,n) 

 Time complexity of NQueen() is O(n!) 

 

o Examples 

 Show the state space tree for 4 Queens problem. Show the steps in solving 4 Queens 

problem using backtracking method to print all the solutions 

 

 Branch and Bound Technique 

o During state space tree generation E-node remains E-node until it is dead. 

o Two strategies: 

 Breadth First Search(BFS) 

 It is called FIFO(First In First Out). Here the live nodes are placed in a 

queue. 

 Depth Search(D-Search)  

 It is called LIFO(Last In First Out). Here the live nodes are placed in a 

stack. 

o Least Cost Search(LC Search) 

 To improve the searching speed, we can use a ranking function ĉ(.) for live 

nodes.  

 ĉ(.) value of each live node is calculated. The next E-node is the live node with 

least ĉ(.). Such a search strategy is called LC Search. 

 BFS and D-Search are the special cases of LC-Search. 

 LC-Search coupled with bounding function is called LC Branch and Bound 

Search. 

o LC-Search Control Abstraction 

Algorithm LCSearch(t) 

{ if t is an answer node then output t and return 

 E = t 

 Initialize the list of live nodes to be empty 

 repeat 

 { for each child x of E do 

  { 

     if x is an answer node then output the path from x to t and return 

   Add(x) 

   x  parent = E 

  } 

  if there are no more live nodes then 

  { Write “no answer node” 

   return 

  } 

  E = Least() 

 }until(false) 

} 
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 Least() finds a live node with least ĉ. This node is deleted from the list of live 

nodes and returned. 

 Add(x) adds the new live node x to the list of live nodes. 

 LCSearch outputs the path from the answer node to the root t. 

 LCSearch terminates only when either an answer node is found or the entire 

state space tree has been generated and searched.  

 The control abstraction for LC, FIFO and LIFO are same. The only difference is 

the implementation of the list of live nodes. 

 FIFO Search scheme: 

o The list of live nodes is implemented as queue. 

o Least() and Add(x) being algorithms to delete an element from 

and add an element to the queue. 

 LIFO Search scheme: 

o The list of live nodes is implemented as stack. 

o Least() and Add(x) being algorithms to delete an element from 

and add an element to the stack. 

 LC-Search Scheme: 

o Add(x) is an algorithm to add elements to the list. Least() returns 

a live node with least ĉ(.) from the list. 

 

o Branch and Bound Algorithm for Travelling Salesman Problem 

 Given a set of cities and distance between every pair of cities, the problem is to find the 

shortest possible tour that visits every city exactly once and returns to the starting point. 

 Example: Apply branch and bound algorithm to solve TSP for the following graph, 

assuming the start city as „a‟. Draw the state space tree. 

  
 Solution 

 The adjacency matrix is 

  
 Perform row reduction, then column reduction  
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      Total cost reduced = 2+2+1+1+0+0+0+0 = 6 

      The state space tree is 

 
     M1 is the matrix for node 1 is 

 Generate the child node of node 1 

  
 Find the matrix and cost of node 2 

o Set row a and column b elements are α 

o Set M1[b, a]= α 

o The resultant matrix is 

  
o Perform row reduction, then column reduction 

 
Cost reduced = r = 5 

M2 is the matrix for node 2 

Cost of node 2 = Cost of node 1 + M1[a, b] + r = 6 + 0 + 5 = 11 

 Find the matrix and cost of node 3 

o Set row a and column c elements are α 

o Set M1[c, a]= α 

o The resultant matrix is 

  
o Perform row reduction, then column reduction 

 Cost reduced = r = 2 
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M3 is the matrix for node 3 

Cost of node 3 = Cost of node 1 + M1[a, c] + r = 6 + 3 + 2 = 11 

 Find the matrix and cost of node 4 

o Set row a and column d elements are α 

o Set M1[d, a]= α 

o The resultant matrix is 

  
o Perform row reduction, then column reduction 

 
Cost reduced = r = 6 

M4 is the matrix for node 4 

Cost of node 4 = Cost of node 1 + M1[a, d] + r = 6 + 5 + 6 = 17 

o Now the state space tree is 

  
  Now the live nodes are 2, 3 and 4. Minimum cost is for node 2 and 3. Choose  

one node(say node 2) as the next E-node. 

o Generate the child node of node 2 

  
  Find the matrix and cost of node 5 

o Set row b and column c elements are α 

o Set M2[c, a]= α 

o The resultant matrix is 
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o Perform row reduction, then column reduction 

                         
Cost reduced = r = 2 

M5 is the matrix for node 5 

Cost of node 5 = Cost of node 2 + M1[b, c] + r = 11 + 5 + 2 = 18 

 Find the matrix and cost of node 6 

o Set row b and column d elements are α 

o Set M2[d, a]= α 

o The resultant matrix is 

  
o Perform row reduction, then column reduction 

                         
Cost reduced = r = 0 

M6 is the matrix for node 6 

Cost of node 6 = Cost of node 2 + M1[b, d] + r = 11 + 0 + 0 = 11 

 

o Now the state space tree is 

  
  Now the live nodes are 5, 6, 3 and 4. Choose one node which having minimum 

cost(say node 6) as the next E-node. 
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o Generate the child node of node 6 

  
 Find the matrix and cost of node 7 

o Set row d and column c elements are α 

o Set M6[c, a]= α 

o The resultant matrix is 

  
o Perform row reduction, then column reduction 

 
Cost reduced = r = 0 

M7 is the matrix for node 7 

Cost of node 7 = Cost of node 6 + M6[d, c] + r = 11 + 0 + 0 = 11 

 

o Now the state space tree is 
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Now the live nodes are 5, 7, 3 and 4. Choose one node which having minimum 

cost(say node 7) as the next E-node. Node 7 having no child node.  

Now we can say that node 1 to node 7 path is the Traveling salesperson path. 

 

The TSP path = a-b-d-c-a 

The TSP cost = 11 
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